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Sound pressure fields generated by coaxial collisions of two vortex rings with
equal/unequal strengths are simulated numerically. The axisymmetric, unsteady, com-
pressible Navier–Stokes equations are solved by a finite difference method, not only
for a near field but also for a far field. The sixth-order-accurate compact Padé scheme
is used for spatial derivatives, together with the fourth-order-accurate Runge–Kutta
scheme for time integration. The results show that the generation of sound is closely
related to the change of direction of the vortex ring motion induced by the mutual in-
teraction of the two vortex rings. For the case of equal strength (head-on collision), the
change of direction is associated with stretching of the vortex rings. Generated sound
waves consist of compression parts and rarefaction parts, and have a quadrupolar
nature. For the case of unequal strengths, the two vortex rings pass through each
other; the weaker vortex ring moves outside the stronger vortex ring which shows a
loop motion. The number of generated waves depends on the relative strength of the
two vortex rings. The sound pressure includes dipolar and octupolar components, in
addition to monopolar and quadrupolar components which are observed for the case
of a head-on collision.

1. Introduction
Interactions of vortex rings may be one of the most fundamental mechanisms of

sound generation in three-dimensional vortical flows. The interactions are observed in
a round jet under certain conditions and are considered to play important roles in the
generation of jet sound (Hussain & Zaman 1980; Zaman 1985; Shariff & Leonard
1992). Studies of sound generated by interactions of two vortex rings have been done
for coaxial as well as oblique collisions both experimentally (Kambe & Minota 1983;
Minota & Kambe 1986; Kambe, Minota & Takaoka 1993) and computationally
(Shariff et al. 1988; Kambe et al. 1993; Tang & Ko 1995; Inoue & Hattori 1997;
Adachi, Ishii & Kambe 1997; Ishii, Maru & Adachi 1997). In most of the studies,
except for Tang & Ko (1995), two vortex rings of equal strength were considered.

Depending on the sense of rotation, coaxial interactions of two vortex rings can be
divided into two categories: passage interactions and collision interactions (Shariff &
Leonard 1992). In passage interactions, two vortex rings have the same sense of rota-
tion, and travel in the same direction. The rear vortex ring attempts to pass through
the front one, resulting in various patterns of vortex motion such as leapfrogging and
merging. Passage interactions are observed in a round jet under certain conditions
(Hussain & Zaman 1980; Zaman 1985). On the other hand, in collision interactions,
two vortex rings have opposite senses of rotation, and travel toward each other.
The radii of the vortex rings grow due to mutual induction. Collision interactions



328 O. Inoue, Y. Hattori and T. Sasaki

are rarely observed in engineering applications, but interactions of vortex rings with
opposite senses of rotation are observed in coaxial jets and are considered to play an
important role in the generation of coaxial jet noise (Tang & Ko 1992, 1994).

Head-on collisions have been used by Kambe and his co-workers primarily to
test theories of vortex sound generation. Using a microphone, Kambe & Minota
(1983) and Minota & Kambe (1986) measured the pressure signals generated by the
head-on collision of two vortex rings. Analysis of the observed signals showed that
the acoustic pressure is composed of quadrupolar and monopolar components. They
compared the measured data with the values predicted by an inviscid theory and also
by a viscous theory. The inviscid theory failed to predict either the appearance of
the monopole or the behaviour of the quadrupole in the later stage of evolution. On
the other hand, the viscous theory predicted the appearance of the monopole and
described the evolution of the quadrupole much better than the inviscid theory. The
results of Minota & Kambe suggest that the viscous effect may not be negligible in
sound generation, though the computational results of Shariff et al. (1988) showed
that inviscid core deformation is sufficient to explain the later stage of quadrupole
evolution. So far few experimental studies have been done on sound generated by the
collision of vortex rings.

In computational analyses of vortex sounds, numerical simulations are often sep-
arated into two parts: the aerodynamic part and the acoustic part (Kambe et al.
1993; Ishii et al. 1997). First, in the aerodynamic part, near-field flow structures of
vortex interactions are obtained by simulating the flow field: for example, by the
(incompressible) Navier–Stokes simulations (Kambe et al. 1993; Adachi et al. 1997;
Ishii et al. 1997) or by inviscid contour dynamics methods (Shariff et al. 1988; Tang
& Ko 1995). Then, in the acoustic part, the far-field sound pressure is calculated
theoretically, using the near-field flow quantities obtained in the aerodynamic part.
This method saves computational time as well as memory storage compared with
direct numerical simulations, because the flow in the far field is assumed to be still
or uniform and thus is not solved for numerically.

Kambe et al. (1993) studied sounds generated by the oblique collision of two vortex
rings at right angles both computationally and experimentally. The three-dimensional,
incompressible, Navier–Stokes equations were solved by a pseudo-spectral method.
The evolution of the vorticity field obtained was used to predict the sound pressure
wave by using a theoretically derived formula. Independently, a laboratory experiment
was performed using a shock tube (the Mach number was 0.08). The wave modes
obtained from the laboratory experiment and the computer simulation were compared.
Both results are in qualitative agreement, and show the appearance of octupolar
components in addition to the quadrupolar components.

Using a contour dynamics method, Shariff et al. (1988) studied flow fields produced
by head-on collision and by the passage interaction of two vortex rings. The far-field
acoustic sound was calculated using the theory of Kambe & Minota (1983). For the
case of head-on collision, a contour dynamics result for thick vortex rings showed good
overall agreement with the experiment of Kambe & Minota (1983). For the case of
passage interaction, the results showed wavy oscillations of the sound pressure which
may be related to core deformations. Also using a contour dynamics method, Tang
& Ko (1995) studied an axisymmetric, incompressible, inviscid flow field produced
by the collision of two vortex rings with equal/unequal strengths. The corresponding
far-field sound pressure was calculated using the formula of Möhring (1978). They
found that the vortex ring dynamics and the sound generation mechanism depend
significantly on the strength (circulation) ratio of the two colliding vortex rings.



Sound generation by collision of two vortex rings 329

Adachi et al. (1997) numerically studied sound generated by the oblique collision
of two vortex rings at right angles. For the near-field vorticity region, the three-
dimensional, incompressible Navier–Stokes equations were solved by a vorticity–
potential method. The results were used to obtain the far-field sound pressure by
using a theory formulated in the form of multipole expansions. The results were
consistent with the experiment of Kambe et al. (1993), not only for the near-field
vortex ring dynamics, but also for the far-field sound pressures. Though this type of
computational method gives qualitatively similar results to experiments, the generation
process and the propagation process of the sound in the near and transition fields are
not seen directly by this method.

A new development has been the field of computational aeroacoustics (CAA),
where both the fluid motion and the sound which it generates are directly computed
(Colonius, Lele & Moin 1994, 1997; Mitchell, Lele & Moin 1995; Inoue & Hattori
1999). For comprehensive reviews, readers are referred to Tam (1995), Lele (1997)
and Moin & Mahesh (1998). In these simulations, the Navier–Stokes equations were
solved by using highly accurate schemes both for space and time in order to precisely
capture the sound pressure, which is usually much smaller than the pressure in the
near-field fluid flow. As noted by Moin & Mahesh (1998), CAA is still in its infancy,
and there are many problems remaining to be studied using it.

The purpose of this paper is to study, using direct Navier–Stokes simulations
(DNS), the generation and propagation mechanisms of the sound in an axisymmetric
flow field produced by coaxial collisions of two vortex rings with equal/unequal
strengths and to increase our understanding of the characteristic features of the
sound. First, we examine the basic nature of the sound generated by the head-on
collision of two vortex rings, which is one of the most simplified models of three-
dimensional vortical flows. Special attention is paid to the relation between the vortex
ring dynamics and the sound pressure it generates. The effects of the Mach number
of the vortex rings and the Reynolds number are also examined. The sound pressure
signals are compared with the experiment of Minota & Kambe (1986). Then, as an
example of more complex cases, we simulate the flow field produced by the collision
of two vortex rings with unequal strengths and examine the effects of the inequality
on sound generation.

2. Direct Navier–Stokes Simulation
2.1. Mathematical formulation and numerical procedure

2.1.1. Flow model and parameters

A schematic diagram of the flow model is presented in figure 1. We assume that
the flow is axisymmetric with respect to the x-axis. The radial coordinate is expressed
by y. Two vortex rings are set initially to move along the x-axis and collide with each
other near the y-axis (x = 0). The vortex ring on the left-hand side (hereafter referred
to as the left vortex ring) which moves from left to right is denoted by the subscript
1, and the vortex ring on the right-hand side (right vortex ring) which moves from
right to left is denoted by the subscript 2. The symbol R0 denotes the radius of the
vortex rings, and Rc denotes the core radius. Both the ring radius and the core radius
are assumed to be the same for the two vortex rings.

The vortex rings are assumed to have a Gaussian distribution of vorticity ini-
tially. For example, the initial distribution of the vorticity of the left vortex ring is
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Figure 1. Schematic diagram of the flow model.
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�, Sullivan et al. (1973), rc = 0.24.

expressed as

ω1(x, y) =
Γ1

πR2
c

exp

[
− (x− x1)

2 + (y − y1)
2

R2
c

]
. (2.1)

The symbol Γ denotes the circulation, and (x1, y1) is the centre of the vortex core.
The initial translational velocity of the vortex ring, U1, is related to the circulation,
Γ1, by (Saffman 1970)

U1 =
Γ1

4πR0

[
ln

(
8R0

Rc

)
− 0.558

]
. (2.2)

A similar relation holds for Γ2 and U2. For reference, the initial distributions of the
vorticity for the cases of rc ≡ Rc/R0 = 0.15 and 0.3 are presented in figure 2, together
with the experimental result of Sullivan, Widnall & Ezekiel (1973) for rc = 0.24.

The Mach number of the left vortex ring, M1, and that of the right vortex ring,
M2, are defined by M1 = U1/c∞ and M2 = U2/c∞, respectively. Here, the symbol c∞
denotes the speed of sound. In this study, except for figures 18(e) and 18(f) shown
later, we assume M1 >M2.
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The lengths are made dimensionless by the vortex ring radius R0. The velocity may
be scaled either by U1 or by c∞. If we make the flow quantities dimensionless with
U1, the Reynolds number may be defined as Re∗ = U1R0/ν∞, where ν is the kinematic
viscosity. In this case, the time scale is unity. If we choose c∞ as the characteristic
velocity, instead of U1, the Reynolds number may be defined as Re = c∞R0/ν∞, and
the time scale is 1/M1. Another meaningful Reynolds number may be Re∗∗ = Γ1/ν∞,
which is based on the circulation Γ1. As the sound pressure waves propagate at the
speed of sound, the relation between the pressure signals observed in the transitional
and far fields and the vortex ring motion in the near field which generates the signals
may be more easily understood by the use of the time t which is based on the speed
of sound. On the other hand, the vortex ring motion itself may be characterized by
U1. In addition, as will be seen later, several interesting features of the sound pressure
(for example, figures 13, 27 and 28) are well illustrated by the time t∗ which is based
on U1. The three Reynolds numbers are all related to each other, through equation
(2.2), as

Re = Re∗/M1 (2.3)

=
Re∗∗

4πM1

[
ln

(
8

rc

)
− 0.558

]
. (2.4)

The times t and t∗ are also related to each other as

t∗ = M1t. (2.5)

In this study, the Reynolds numbers Re and Re∗ and the times t and t∗ are used
together. The Reynolds number Re∗∗ is also used where appropriate (for example,
figure 15).

The Mach numbers are prescribed to be M1, M2 = 0.075 to 0.3. The Reynolds
number prescribed is Re∗ = 150 to 2000 (Re = 1000 to 13 300). The ratio of the
core radius to the ring radius is prescribed to be either rc(≡ Rc/R0) = 0.15 or 0.3.
Since the Mach numbers are relatively low (M1,M2 6 0.3), temperature dependence
of the transport properties is not likely to be a significant effect (Colonius et al.
1997). Therefore, the molecular viscosity and the thermal conductivity are taken to
be constant. The Prandtl number is assumed to be 0.75, and the ratio of specific heats
is 1.4.

2.1.2. Numerical schemes and computational parameters

The unsteady, axisymmetric, compressible Navier–Stokes equations are solved by a
finite difference method. For spatial derivatives, a sixth-order-accurate compact Padé
scheme (third-order-accurate at the boundaries) proposed by Lele (1992) is adopted.
At the axis of symmetry, a fourth-order-accurate interpolation is used. The fourth-
order Runge–Kutta scheme is used for time-integration. Non-reflecting boundary
conditions (Poinsot & Lele 1992) are used at the boundaries.

A schematic diagram of the computational domain is presented in figure 3. Ac-
cording to the theory of low Mach number sound generation (for example, Goldstein
1976), the length scales are unity in the vortex region and 1/M1 in the sound region;
the length scale in the sound region is larger than in the vortex region. The time scale
is the same in the whole region: unity if the velocity is scaled by U1 and 1/M1 if
scaled by c∞. Based on this estimation, we divide the computational domain into three
regions of different grid spacings: a vortex region [−xv 6 x 6 xv, 0 6 y 6 yv], a sound
region [−xs 6 x 6 xs, 0 6 y 6 ys], and a buffer region [−xb 6 x 6 xb, 0 6 y 6 yb].
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Figure 3. Schematic diagram of the computational domain.

The spacing in the vortex region is prescribed to be fine enough to capture the
motion of vortex rings. In the sound region, the spacing is prescribed to be larger
than that in the vortex region, but still small enough to capture sound pressure waves.
The spacing in the buffer region is prescribed such that pressure waves damp with
increase in distance and become sufficiently small before reaching the boundaries of
the computational domain where the non-reflecting boundary conditions are used.
The role of the buffer region is similar to that of the ‘sponge region’ of Colonius et
al. (1997). Only the results obtained in the vortex region and in the sound region
are used for analysis. The spacings among the three regions are connected smoothly
by using a hyperbolic-tangent curve. In addition, we imposed a restriction that the
increment of the spacing does not exceed 5%: (∆x)i+1/(∆x)i 6 1.05.

The grid spacings and the sizes of each computational region were determined after
many preliminary tests. The grid spacings are fixed to be ∆xv = 0.02, ∆xs = 0.4, and
∆xb = 5.0. The spacings in the y-direction are set equal to those in the x-direction:
∆yv = ∆xv , ∆ys = ∆xs, and ∆yb = ∆xb. As the length scale in the sound region
is 1/M1, the corresponding grid spacing ∆x∗s based on this scale, obtained from
∆x∗s = M1∆xs = 0.4M1, is 0.12 for M1 = 0.3 and 0.03 for M1 = 0.075.

The size of the sound region is fixed to be xs = ys = 80.0. On the length scale
1/M1, this value is equivalent to the size 24.0 for M1 = 0.3 and 6.0 for M1 = 0.075.
The size of the buffer region is fixed to be xb = yb = 180.0.

The size of the vortex region is slightly different among the cases treated, because
the vortex ring motion varies depending on the combinations of the Mach numbers,
M1 and M2. The typical values are xv = 12.7, yv = 7.0. The number of grid points
is, typically, 1967 (x-direction)× 713 (y-direction). The time step is ∆t = 0.01; thus,
∆t∗ = 0.003 for M1 = 0.3 and ∆t∗ = 0.00075 for M1 = 0.075.

2.2. Initial conditions

With the vorticity distributions given by equation (2.1), the initial velocity field was
prescribed by solving the following equations, under the assumption that the flow is
incompressible, ∇ · v = 0:

v = ∇× A, ∇2A = −ω. (2.6)

The boundary conditions for the above Poisson equation were prescribed by a solution
of power series, which are known to converge well at the far field and near the axis
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Figure 4. Time histories of the pressure measured at r = 40, θ = 90◦. rc = 0.15, Re = 3300
(Re∗ = 500). ———, ∆pc (two vortex rings with M1 = M2 = 0.15); – – – –, ∆ps (single vortex ring
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(Morse & Feshbach 1953). The assumption of incompressibility for the initial velocity
field may be acceptable for sufficiently low Mach numbers. Once the velocity field is
known, the initial density and pressure fields are determined by solving the Poisson
equation

∇2 p

ρ
= −γ − 1

γ

∂ui

∂xj

∂uj

∂xi
. (2.7)

This equation is derived from the conservation of momentum under the assumption
that the flow is steady, inviscid and homentropic: p/ργ = const. Again, the far-field
boundary conditions for this equation were prescribed by a solution of power series.

Though the Mach numbers treated in this study are relatively low (M1,M2 6 0.3),
the initial flow field prescribed above is not the solution of the compressible Navier–
Stokes equations. Therefore, at an early stage of the flow development, acoustic
transients associated with the initial flow field are observed. A time history of the
sound pressure, ∆pc, for the case of head-on collision with M1 = M2 = 0.15, rc = 0.15,
Re = 3300 (Re∗ = 500), measured at r = 40 and θ = 90◦ is represented in figure
4 by the solid line; the dashed line is the pressure, ∆ps, for the case of a single
vortex ring moving at its self-induced velocity. The modified pressure ∆p is defined
as ∆p = (p− p∞), where p∞ denotes the ambient pressure. For the coordinate system
(r, θ), see figure 1. As seen from figure 4, for the case of head-on collision, the initial
transients are observed in the range 30 6 t 6 50. The acoustic transients are observed
not only for the case of head-on collision but also for the case of a single vortex
ring; the initial transients for the single vortex ring are also observed in the same
range 30 6 t 6 50. No pressure waves except for the initial transients are observed
for the single vortex ring. The initial locations of the two vortex rings are prescribed
such that the collision occurs sufficiently after the acoustic transients pass through
the vortex region; the first and the second pulses are observed after t > 80 in figure 4.

3. Results for two vortex rings of equal strength
In this section, computational results for the case of a head-on collision are

presented. First, evolutions of the vortex ring motion and the sound pressure field are
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Figure 5. Time development of a vorticity field. M1 = M2 = 0.15, rc = 0.15, Re = 3300 (Re∗ = 500).
The prime denotes clockwise rotation. The contour levels are from ωmin = −3.0 to ωmax = 3.0 with
an increment of 0.1. (a) t = 48 (t∗ = 7.2), (b) t = 60 (t∗ = 9.0), (c) t = 72 (t∗ = 10.8), (d) t = 84
(t∗ = 12.6).

presented. It is shown that the generation of sound is related to the change of direction
of the vortex ring motion associated with stretching. Then, the nature of the generated
sound and the effects of the Mach number, the Reynolds number and the core radius
are examined. It is shown that the generated sound waves consist of compression parts
and rarefaction parts, and have a quadrupolar nature. The scaling law, ∆p ∝ M4

1/r,
which was predicted by Kambe & Minota (1983), is confirmed numerically. Then, the
computational results are compared with the experiment of Minota & Kambe (1986)
and the theoretical values predicted by an extended Möhring’s method (Kambe &
Minota 1983).

3.1. Evolution of the vortex rings

A typical example of a collision of two vortex rings of equal strength (head-on
collision) is presented in terms of the vorticity in figure 5 for the case of M1 = M2 =
0.15, rc = 0.15 and Re = 3300 (Re∗ = 500). The figure shows the time development of
the vorticity field in a meridional cross-section. The time is shown by t in the figure;
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the corresponding time t∗ is presented in the caption. The numbers 1 and 2 denote
the left and right vortex rings, respectively, and the prime denotes clockwise rotation.
The two vortex rings are initially located at x = ±8.0. With increased time, the two
vortex rings approach along the x-axis until t ∼ 60 (figure 5a, b), and then stretch in
the direction perpendicular to the x-axis (figure 5c, d); the radii of the vortex rings
grow with time. This series of events has been observed both in experiments (for
example, Oshima 1978) and in computations (Shariff et al. 1988).

In a meridional cross-section of the flow field, the vortex rings behave as if they
were vortex pairs in a two-dimensional flow. Thus, the explanation of the flow field
in terms of the vortex pairs often makes it easy to understand the vortex ring motion.
For example, the flow development shown in figure 5 can be explained as follows. Two
vortex pairs, (1, 1′) and (2, 2′), approach along the x-axis initially at their respective
self-induced velocities. With decrease in the distance between the two vortex rings,
the mutual interactions between 1 and 2′ and between 1′ and 2 become stronger than
those between 1 and 1′ and between 2 and 2′. As a result, the new vortex pairs, (1, 2′)
and (1′, 2), move away from each other along the y-axis, resulting in stretching of the
vortex rings. The explanation in terms of the vortex pair will be used frequently in
this study.

3.2. Generation and propagation of sound waves

3.2.1. Evolution of the pressure field near the vortex rings

Isobars of ∆p (= p − p∞) around the vortex rings for the same case as in figure 5,
are presented in figure 6. In the figures, the symbol ⊕ denotes the compression region
where ∆p is positive, and 	 denotes the rarefaction region where ∆p is negative.
When a single vortex ring moves at its self-induced velocity, the pressure in the
neighbourhood of the core of that vortex ring becomes negative while that behind
and ahead of the vortex ring becomes positive; in a meridional cross-section of the
flow field, two rarefaction regions and two compression regions appear. Therefore,
when two vortex rings move, as seen in figure 6(a), four rarefaction regions and four
compression regions appear in a meridional cross-section of the flow field at an initial
stage of the flow development. With increased time, the two vortex rings approach,
and the compression regions ahead of the vortex rings merge, as seen near the origin
in figures 6(b) and 6(c). Then, the vortex rings start to stretch at t ∼ 60, and their
radii grow with time.

As noted in the previous section, the new vortex pairs, (1, 2′) and (1′, 2), in the
meridional cross-section move outward along the y-axis (figure 5c, d). This outward
motion produces new compression regions ahead of the vortex pairs, which are marked
by open arrows in figure 6(d). The appearance of the new compression regions forces
the rarefaction regions around the vortex pairs to move circumferentially, as shown by
solid arrows in figure 6(d). This circumferential movement of the rarefaction regions
produces new rarefaction regions outside the compression regions near the x-axis, as
seen in figure 6(e). The new compression regions (which are generated ahead of the
outward moving vortex pairs) and the new rarefaction regions (which are generated
near the x-axis) form the first pulse. This will be more clearly seen later in figure 7.
The outward motion of the vortex pairs reduces the magnitude of the pressure in
the compression region behind the vortex pairs (that is, the compression region near
the origin in figure 6e), and eventually the compression region is separated into two
parts, as seen in figure 6(f). As a result, the pressure distribution around each vortex
pair becomes similar to that around a single vortex ring: two rarefaction regions and
two compression regions exist.
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Figure 6. Time development of the pressure field around the vortex rings.M1 = M2 = 0.15, rc = 0.15,
Re = 3300 (Re∗ = 500). (a) t = 40 (t∗ = 6.0), (b) t = 56 (t∗ = 8.4), (c) t = 60 (t∗ = 9.0), (d) t = 64
(t∗ = 9.6), (e) t = 68 (t∗ = 10.2), (f) t = 80 (t∗ = 12.0). ∆pmin = −5× 10−3, ∆pmax = 5× 10−3, with an
increment of 2.5× 10−4 for (a). ∆pmin = −2× 10−3, ∆pmax = 2× 10−3, with an increment of 1×10−4

for (b) to (f).

3.2.2. Evolution of the pressure field in the sound region

The magnitude of the pressure ∆p decays with increasing distance from the vortex
region, as will be seen later in figure 8, and in the far field it is much smaller than
in the near field around the vortex rings. In order to see the transition process from
the near to far fields, the evolution of the pressure field for the same flow as in figure
6 is presented in figure 7 with finer resolutions of the isobars and with wider ranges
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Figure 7. Time development of the pressure field in the sound region. M1 = M2 = 0.15, rc = 0.15,
Re = 3300 (Re∗ = 500). (a) t = 64 (t∗ = 9.6), (b) t = 68 (t∗ = 10.2), (c) t = 76 (t∗ = 11.4), (d) t = 84
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(e). ∆pmin = −1× 10−5, ∆pmax = 1× 10−5, with an increment of 5× 10−7 for (f).

of the flow field (−47 6 x, y 6 47 for figures 7a to 7e, and −80 6 x, y 6 80 for 7f).
Figures 7(a) and 7(b) show the pressure distributions at the same instants as in figures
6(d) and 6(e), respectively, but contour levels are different. As noted before in § 2.2,
at an early stage of the flow development, the initial transients related to the initial



338 O. Inoue, Y. Hattori and T. Sasaki

conditions are generated and propagate from the vortex rings, which are seen near
the corners of figures 7(a) and 7(b). Figures 7(a) to 7(c) show that a pressure wave is
generated and propagates from the vortex ring region after t ' 60. In this study, we
call this pressure wave the first pulse. The circumferential variation of ∆p of the first
pulse is alternating, and two compression regions and two rarefaction regions appear.
That is, the first pulse has a quadrupolar nature. The compression regions appear
ahead of the outward moving vortex pairs and propagate toward the y-direction. The
rarefaction regions appear on both sides of the vortex rings and propagate toward the
x-direction. By comparing figures 7(a) to 7(c) with figures 6(d) and 6(e), and also with
figures 5(b) and 5(c), we can readily see that the first pulse is generated by stretching
of the vortex rings, as noted already in § 3.2.1.

Figures 7(c) to 7(e) show that a second pressure wave (hereafter referred to as
the second pulse), also of quadrupolar nature, radiates after the first pulse. The
circumferential pressure variation of the second pulse is opposite in sign to that of
the first pulse. It should be noted that, as already seen in figure 5, the vortex rings
continue to stretch after generation of the first pulse, and that no changes of direction
of the vortex ring motion occur. This suggests that generation of the second pulse
may not be a direct result of the change of direction of the vortex ring motion, but
may come about from matching of the near and far fields, so that the harmonic
constraints,

∫ ∞
−∞ ∆p dt = 0 at a given point or

∫ ∞
0
r∆p dr = 0 at a given instant, may

be satisfied (Landau & Lifshitz 1987).
Figure 7(f) shows that appreciable pressure waves are not observed after the second

pulse; that is, the number of generated pulses may be two for the case of a head-on
collision.

3.3. Decay of the sound pressure as r−1

Instantaneous distributions of the pressure, ∆p, for the same flow as in figures 5 to 7
are plotted against distance r from the origin in figure 8(a) for θ = 0◦ and in figure
8(b) for θ = 90◦. As seen from figure 8, both the first and the second pulses propagate
radially with time, and the propagation velocity of the pulses is equal to the speed
of sound. If we assume that the pulses radiate from the origin (r = 0), the radiation
time is estimated from figure 8 to be t ' 60 for the first pulse, and t ' 68 for the
second pulse. The estimated time for the first pulse is approximately equal to the
starting time of stretching (figure 5b). This result is consistent with the estimation by
the contour dynamics calculation of Shariff et al. (1988).

It is also seen from figure 8 that the peak values of ∆p of both the first and the
second pulses decay with r. The peak pressure values of the first and the second
pulses measured along the θ = 0◦ line (x-axis) and along the θ = 90◦ line (y-axis) are
plotted in figure 9 for the two vortex core sizes: rc(≡ Rc/R0) = 0.15 and 0.3. In the
figure, the solid lines denote the inverse proportion to r. We can see from figure 9
that in the far field the sound pressure decays in inverse proportion to the distance r,
in agreement with the theoretical prediction (Landau & Lifshitz 1987). It is also seen
from figure 9 that the vortex rings with a large core size give stronger pressure peaks
than those with a small core size.

3.4. Decomposition of the sound pressure

The sound pressure can be expressed generally as

∆p (r, θ, t) = A0(r, t) + A1(r, t)P1(cos θ) + A2(r, t)P2(cos θ)

+A3(r, t)P3(cos θ) + A4(r, t)P4(cos θ) + · · · , (3.1)
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Figure 8. Radial distributions of the pressure, ∆p. M1 = M2 = 0.15, rc = 0.15, Re = 3300
(Re∗ = 500). ———, t = 88 (t∗ = 13.2); – – – –, t = 104 (t∗ = 15.6); –·–·–·–, t = 120, (t∗ = 180).
(a) θ = 0◦, (b) θ = 90◦.

where Pn(cos θ) are the Legendre polynomials, expressed as

P1(cos θ) = cos θ, (3.2)

P2(cos θ) = 3
2

cos2 θ − 1
2
, (3.3)

P3(cos θ) = 5
2

cos3 θ − 3
2

cos θ, (3.4)

P4(cos θ) = 35
8

cos4 θ − 15
4

cos2 θ + 3
8
. (3.5)

The coefficients An(r, t) are obtained from

An(r, t) =

∫
∆p (r, θ, t)Pn(cos θ) sin θ dθ∫
{Pn(cos θ)}2 sin θ dθ

(3.6)

=
2n+ 1

2

∫
∆p (r, θ, t)Pn(cos θ) sin θ dθ. (3.7)

The expression (3.1) in the limit of low Mach number and high Reynolds number
was given by Kambe et al. (1993) for the three-dimensional oblique collision of two
vortex rings. The first term on the right-hand side of (3.1) is called a monopole, the
second term a dipole, the third term a quadrupole, and the fourth term an octupole.
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Shown in figure 10 are the first four terms of the coefficients An (i.e. A0 to A3),
obtained from the present Navier–Stokes results for the case of M1 = M2 = 0.15, rc =
0.15, Re = 3300 (Re∗ = 500). For the case of a head-on collision, the dipole and the
octupole vanish through geometrical symmetry. Therefore, as seen from figure 10,
only the quadrupolar term A2 and the monopolar term A0 are detected. Kambe &
Minota (1983) and Minota & Kambe (1986) experimentally found that the acoustic
wave generated by the head-on collision of two vortex rings includes an isotropic
monopolar component in addition to the quadrupolar component predicted by the
inviscid theory of vortex sound. The computational result shown in figure 10 is in
agreement with the experiments. Figure 10 also shows that the monopole is generated
after the first peak of the quadrupole, because the monopole is related to the viscous
dissipation of the kinetic energy into heat (Kambe 1984; Obermeier 1985; Minota &
Kambe 1986). This result is also in agreement with the experiments.

3.5. Wave profiles from vortex sound theory

According to vortex sound theory, profiles of sound pressure waves may be related
to the vortex ring motion. For example, let us consider the moment I(t) of the source
term g(x, y, t) of Powell’s equation (Powell 1964) which is defined as

I =

∫ (
x2 − 1

2
y2
)
gy dy dx, (3.8)
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Figure 10. Amplitudes of wave modes. M1 = M2 = 0.15, rc = 0.15, Re = 3300 (Re∗ = 500).
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g = ∇ · (ω × u). (3.9)

Under the assumption of low Mach number, high Reynolds number and acoustic
compactness, the moment I is related to the moment Q of the vorticity ω as (Crighton
1981)

I(t) =
1

2π

dQ

dt
, (3.10)

Q(t) = 2π

∫
xy2ω dy dx. (3.11)

Using the matched asymptotic expansion, the sound pressure ∆p is given by

∆p =
1

6r
I (2)(tr)P2(cos θ) + · · · , (3.12)

where (2) denotes the second derivative with respect to the time and tr(≡ t− r/c∞) is
the retarded time. Therefore, the coefficient AP2 (r, t) of the quadrupolar component is
expressed as

AP2 (r, t) =
1

6r
I (2)(tr) + O(M6). (3.13)

Here, the superscript P denotes the term based on Powell’s acoustic analogy. Note
that the monopolar term is due to the viscous decay of energy (Kambe 1984) and
that the dipolar term is O(M5). Therefore, the monopolar and dipolar components
vanish identically in this analogy, if we consider terms up to O(M4). This may be
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Figure 11. Powell’s analogy. M1 = M2 = 0.15, rc = 0.15, Re = 3300. (a) Moment I(t),
(b) quadrupolar component measured at r = 80. – – – –, AP2 obtained by Powell’s analogy;
———, A2 obtained from DNS.

acceptable because the quadrupolar component is dominant for low Mach number
flows (figure 10). As seen from (3.13), the amplitude of the quadrupolar component
is proportional to the second derivative of the moment I and inversely proportional
to the distance r.

The moment I(t) and the quadrupolar term AP2 (r, t) measured at r = 80, both
obtained by substituting the present DNS result into the vorticity ω of the source
term Q(t) in (3.11), are presented in figures 11(a) and 11(b), respectively. Figure 11(a)
shows that at the initial stage of the flow development (t 6 50) the moment I(t)
decreases gradually owing to viscous diffusion of the vortex cores. With the beginning
of the interaction of the two vortex rings, I(t) decreases rapidly, reaches its minimum
at t ' 70 during the stretching process, and then increases and tends to vanish due to
cancellation of the vorticities of the two vortex rings which have the opposite senses
of rotation to each other.

The quadrupolar sound dominated by AP2 is detected in the far field through the
retarded time. In figure 11(b), the quadrupolar component A2(r, t) replotted from
figure 10 is also presented as the solid line, for reference. We can readily see from
figure 11(b) that AP2 and A2 are in good agreement. As the source term of Powell’s
equation vanishes where vorticity vanishes, this agreement indicates that the main
source of sound is the vortex ring motion. We may also say that the vortex sound
theory predicts the details of the pulses in the far field well.
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Figure 12. Directivity of the sound pressure. M1 = M2 = 0.15, rc = 0.15, Re = 3300 (Re∗ = 500).
r = 60. (a) t = 117.2 (t∗ = 17.6), (b) t = 127.1 (t∗ = 19.1). �, DNS results (∆p positive); ×, DNS
results (∆p negative). The solid (∆p positive) and the dashed (∆p negative) lines denote the values
obtained from ∆p (r, θ, t) = pm(r, t) + pq(r, t)(3 cos2 θ − 1).

3.6. Directivity of the sound pressure

Figure 12 shows polar diagrams of the pressure distribution measured at r = 60 at
two different instants. The radial length from the origin represents the magnitude
of the pressure on a linear scale. The symbols � and × show the present Navier–
Stokes results and denote positive and negitive values of the pressure, respectively. As
readily seen from the four-lobe curves in figure 12, the computational result shows the
quadrupolar nature of the sounds beautifully. The directivity of the sound pressure
is different for the two instants, because the first pulse arrives first at r = 60, figure
12(a), and then the second pulse follows, figure 12(b). Directivity similar to that in
figure 12 was observed experimentally by Minota & Kambe (1986).

As noted in the previous section, for the case of head-on collision, the dipole A1

and the octupole A3 in (3.1) vanish from geometrical symmetry. Therefore, if we
neglect terms higher than A3, equation (3.1) can be rewritten as (Kambe & Minota
1981, 1983; Kambe 1984)

∆p (r, θ, t) = pm(r, t) + pq(r, t)(3 cos2 θ − 1) (3.14)

where pm = A0 and pq = A2/2. The solid and dashed lines in figure 12 denote
the values obtained by decomposing the present Navier–Stokes results, using (3.14).
The solid line denotes positive values, and the dashed line denotes negative values.
As readily seen from figure 12, the computational results and the results obtained
from (3.14) are in good agreement, suggesting again that the sound pressure field is
governed by the quadrupole and the monopole.

3.7. Variation with M1(M2), Re and rc

Kambe & Minota (1983) theoretically found that on a time scale of R0/U1 the
following scaling law holds for the sound pressure ∆p and the Mach number M1 (or
M2) of a vortex ring:

∆p ∝M4
1/r. (3.15)

The experimental results of Minota & Kambe (1986) supported the validity of this
scaling law. In order to confirm it numerically, the computational results for four
different Mach numbers (M1 = 0.3, 0.15, 0.10, 0.075) are presented in figure 13, where
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Figure 13. Effect of the Mach number M1. Time histories of the normalized pressure, ∆p/M4
1 ,

measured at r = 80, θ = 0◦. rc = 0.15, Re = 3300. The symbol t1 denotes the arrival time of
the first pulse pressure peak at the measurement point. ———, M1 = 0.3; – – – –, M1 = 0.15;
–·–·–, M1 = 0.10; · · · · · ·, M1 = 0.075.

the normalized pressure, ∆p/M4
1 , is plotted against the time t∗ − t∗1 = M1(t− t1). The

symbol t1 (or t∗1) denotes the arrival time of the pressure peak of the first pulse at
the measurement point r = 80, θ = 0◦. As seen from figure 13, coincidence of the
curves ∆p/M4

1 versus the time M1(t− t1) is reasonable, supporting the validity of the
scaling law for low Mach numbers. (The dependence of ∆p on r−1 has already been
confirmed in § 3.3.)

Next, in order to see the effects of the Reynolds number on the sound generation,
time histories of the pressure for the case of M1 = M2 = 0.15, rc = 0.15 are shown in
figure 14 for four different Reynolds numbers, Re∗ = 2000, 800, 500 and 150. We can
see from the figure that the sound radiation occurs earlier and the magnitude of the
pressure grows for higher Reynolds numbers. This is because loss of the translational
velocity of the vortex rings due to viscous diffusion of the vortex cores decreases with
decreasing viscosity; the collision (stretching) occurs earlier and the effective Mach
number at the time of collision is larger for higher Reynolds numbers.

Time histories of the pressure for two different vortex core sizes, rc = 0.15 and
0.3, are presented in figure 15 for the case of M1 = M2 = 0.15. In the figure, the
solid line denotes the case rc = 0.3, Re = 3300 (Re∗∗ = 2300), the dashed line the
case rc = 0.3, Re = 2660 (Re∗∗ = 1840), and the chain-dotted line the case rc = 0.15,
Re = 3300 (Re∗∗ = 1840). The acoustic Reynolds number Re is the same for the solid
and chain-dotted lines, while the circulation Reynolds number Re∗∗ is the same for
the dashed and chain-dotted lines. Figures 15 and 9 show that head-on collision of
two vortex rings with larger core size gives stronger sound pressure. This is because
a thinner vortex ring diffuses faster than a thicker vortex ring (Saffman 1970) and
thus the effective Mach number at the time of collision is larger for thicker vortex
rings.
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Figure 14. Effect of the Reynolds number. Time histories of the sound pressure, ∆p, measured at
r = 40, θ = 0◦. M1 = M2 = 0.15, rc = 0.15. ———, Re∗ = 2000 (Re = 13 300, Re∗∗ = 7350); – – – –,
Re∗ = 800 (Re = 5300, Re∗∗ = 2940); –·–·–, Re∗ = 500 (Re = 3300, Re∗∗ = 1840); · · · · · · , Re∗ = 150
(Re = 1000, Re∗∗ = 550).

3.8. Comparison with experiments

Using a microphone, Minota & Kambe (1986) measured the pressure signals generated
by the head-on collision of two vortex rings. The Mach number of the vortex rings
was M1 = M2 = 0.14, and the Reynolds number Re∗(= U1R0/ν∞) was 14 000. The
pressure signals were measured at r = 134, and the signals were averaged over
ten data samplings. The individual samplings showed oscillations which were not
reproducible between samplings. One of the averaged pressure profiles (Data III in
Minota & Kambe) is replotted in figures 16 and 17 as a solid line. In both figures,
part (a) represents the normalized quadrupolar component pq(r, t)/M

4
1 and part (b)

represents the normalized monopolar component pm(r, t)/M4
1 , both plotted against

the time t∗ − t∗1 = M1(t − t1). The symbol t1 denotes the arrival time of the pressure
peak of the first pulse at the measurement point r = 80 in the computation and
r = 134 in the experiment. The present computations were performed for the case
of M1 = M2 = 0.15. The Reynolds numbers Re∗ were 500 and 2000. Therefore, the
Reynolds number in the experiment is 28 times larger than that in the computation
for Re∗ = 500, and 7 times larger than that for Re∗ = 2000. As the vortex core size
rc was not measured in Minota & Kambe, the computational result for rc = 0.15
is presented in figure 16, and that for rc = 0.3 is in figure 17. In the computations,
the pressure signals were measured at r = 80 because of the limited performance of
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Figure 15. Effect of the vortex core size rc. Time histories of the sound pressure, ∆p, measured at
r = 60, θ = 0◦. M1 = M2 = 0.15. ———, rc = 0.30, Re = 3300 (Re∗∗ = 2300); – – – –, rc = 0.30,
Re = 2660 (Re∗∗ = 1840); –·–·–, rc = 0.15, Re = 3300 (Re∗∗ = 1840).

our supercomputer system. Therefore, for comparison with the computational results,
the experimental pressure amplitudes measured at r = 134 have been converted to
the values at r = 80 under the assumption that the sound pressure decays in inverse
proportion to the distance r (figure 9).

In figures 16 and 17, we notice a few differences between the experiment and
the computation. First, we can see at least four pressure peaks of the quadrupolar
term in the experiment (the numbers 1 to 4 in figure 16a) while there are two
peaks in the computation, which are the first and second pulses. At present, we
have no definite explanation for this difference. One of the referees suggests that the
difference would be due to the computational restriction of axisymmetry, because
in reality non-axisymmetric break-down of two colliding vortices has been observed
(Lim & Nickels 1992). Second, the magnitudes of the computed pressure peaks of
both the quadrupole and the monopole are smaller than the experimental values. As
seen from figure 16, the largest Reynolds number gives larger pressure peaks (see
also figure 14). Therefore, the smaller Reynolds numbers used in the computation
(Re∗ = 500, 2000) may be responsible for the difference, at least partly. Another
possible cause of the difference is that the core size rc in the experiment might be
larger than in the computation, as guessed from the comparison of the computational
result for Re∗ = 500 in figure 16 with that in figure 17 (see also figure 15). Further
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Figure 16. Comparison of normalized mode amplitudes with experiment. Measured at r = 80.
– – – –, present DNS with rc = 0.15, Re∗ = 2000; · · · · · ·, present DNS with rc = 0.15, Re∗ = 500;
———, experiment by Minota & Kambe (1986) with Re∗ = 14 000. (a) Quadrupolar component
(pq/M

4
1 ), (b) monopolar component (pm/M

4
1 ).

computational and experimental data should be accumulated in order to explain these
differences.

Also plotted by a chain-dotted line in figure 17 is a theoretical value obtained
by an extended Möhring’s method. Kambe & Minota (1983) and Kambe (1984)
extended Möhring’s method (1978) such that the viscous effect can be taken into
account. In this paper, this method is referred to as the extended Möhring’s method.
By this method, the monopole function pm(r, t) in (3.14) is obtained after the velocity
distribution in the near field is known. Similarly, the quadrupole function pq(r, t) is
obtained after the near-field vorticity distribution is known. The chain-dotted line
in figure 17 was obtained from (3.14), using the present Navier–Stokes data in the
vortex region as the distributions in the near field. We can see from figure 17 that the
agreement between the Navier–Stokes results and the theoretical results obtained by
the extended Möhring’s method is satisfactory.
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Figure 17. Comparison of normalized mode amplitudes with experiment and theory. Measured
at r = 80. – – – –, present DNS with rc = 0.30, Re∗ = 500; –·–·–, extended Möhring’s method
with rc = 0.30, Re∗ = 500; ———, experiment by Minota & Kambe (1986) with Re∗ = 14 000.
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4. Results for two vortex rings of unequal strengths

In this section, computational results for the case of the collision of two vortex
rings of unequal strengths (hereafter referred to as asymmetric collision) are presented.
First, evolutions of the vortex ring motion and the pressure field are presented. It is
shown that the generation of sound is related to the change of direction of the vortex
ring motion owing to the unequal strengths. Then, the nature of the generated sound
and the effects of the Mach numbers are examined. The results show that, for the
case of asymmetric collision, dipolar and octupolar components appear in addition to
the monopolar and the quadrupolar components which are observed for the case of
head-on collision. The results also suggest that the scaling law, ∆p ∝ M4

1 , may hold
under the condition that the Mach number ratio is the same. Then, the computational
results are compared with the theoretical values predicted by the extended Möhring’s
method.
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Figure 18. Trajectories of vortex ring centres. M2 = 0.15, rc = 0.15, Re = 3300. ———, left vortex
ring; –·–·–, right vortex ring; �, location of the centre of a vortex ring at time t. The time interval
between symbols (�) is 20.0. (a) M1 = 0.15 (M1/M2 = 1.0), (b) M1 = 0.165 (M1/M2 = 1.1),
(c) M1 = 0.20 (M1/M2 = 1.33), (d) M1 = 0.30 (M1/M2 = 2.0), (e) M1 = 0.1125 (M2/M1 = 1.33),
(f) M1 = 0.075 (M2/M1 = 2.0).

4.1. Evolution of the vortex rings

Trajectories of the centres of vortex cores in the upper half of a meridional cross-
section are presented in figure 18 for various values of the Mach number M1 of the
left vortex ring with a fixed value of M2(= 0.15) of the right vortex ring. Figure 18(a)
shows the case of head-on collision (M1 = M2), figures 18(b) to 18(d) show the cases
of M1 > M2, and figures 18(e) and 18(f) show the cases of M1 < M2. The centre of a
vortex core is defined as follows:

xc =

∫∫
xω2 dy dx∫∫
ω2 dy dx

, yc

∫∫
yω dy dx∫∫
ω dy dx

. (4.1)

In figure 18, the solid line denotes the trajectory of the left vortex ring, and the
chain-dotted line denotes that of the right vortex ring; � denotes the instantaneous
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Figure 19. Time development of a vorticity field. M1 = 0.20, M2 = 0.15, rc = 0.15, Re = 3300
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location of a vortex centre, which is plotted at time intervals of 20. For the case of
head-on collision, as noted in the previous section, two vortex rings approach along
the x-axis, and then stretch in the y-direction (figure 18a). The trajectories of the two
vortex rings are symmetric with respect to the (x = 0)-plane. When the strengths of
the two vortex rings are different, as seen from figures 18(b) to 18(f), their trajectories
show striking contrast. By the mutual interaction, the weaker vortex ring is induced
to move outside the stronger one after the onset of stretching. On the other hand, the
trajectory of the stronger vortex ring shows a loop. The radius of the loop becomes
smaller with increase in the ratio of the strengths, M1/M2 (when M1 > M2) or M2/M1

(when M1 < M2), as seen from figures 18(b) to 18(f). The two vortex rings eventually
pass through and move away from each other.

A typical example of asymmetric collision is presented in terms of the vorticity in
figure 19 for the case of M1 = 0.20, M2 = 0.15, rc = 0.15 and Re = 3300 (Re∗ = 667).
The figure shows the time development of the vorticity field in a meridional cross-
section. The time is shown by t in the figure; the corresponding time t∗ is presented
in the caption. The numbers 1 and 2 denote the left (stronger) and right (weaker)
vortex rings, respectively, and the prime denotes clockwise rotation. The two vortex
rings are located initially at x = −10.7 and x = 8.0, respectively. As in the case of
head-on collision (§ 3.1), the vortex ring motion can be explained in terms of the
vortex pairs in a meridional cross-section. Initially, the two vortex pairs, (1, 1′) and
(2, 2′), approach along the x-axis at their respective self-induced velocities (figure 19a).
Then, in the same way as in the case of head-on collision, new vortex pairs, (1, 2′)
and (1′, 2), start to move away from the x-axis at t ∼ 60 (figure 19b). As the left
vortex ring is stronger than the right vortex ring, the new pairs tend to move toward
the negative x-direction, and the vortex rings become coplanar at t ∼ 76 (figure 19c).
Following Tang & Ko (1995), we call this instant the pass-through instant. After the
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pass-through instant, the two vortex rings tend to shrink and their radii decrease; in
the meridional cross-section, the distance between the two vortices, 1 and 1′, becomes
shorter with time, and thus the mutual interaction between 1 and 1′ becomes stronger
with time than those between 1 and 2′ and between 1′ and 2. As a result, the old
vortex pairs, (1, 1′) and (2, 2′), revive and recover the initial directions of their motion,
which are parallel to the x-axis: (1, 1′) moves toward the positive x-direction, while
(2, 2′) moves toward the negative x-direction (figure 19d–f). Thus, in accordance with
the trajectories of the vortex centres shown in figure 18(c) the weaker vortex ring
moves outside the stronger vortex ring which shows a loop motion.

4.2. Generation and propagation of sound waves

4.2.1. Evolution of the pressure field near the vortex rings

Isobars of ∆p (= p− p∞) around the vortex rings for the same case as in figure 19
are presented in figure 20, where ⊕ denotes the compression regions (∆p > 0) and 	
denotes the rarefaction regions (∆p < 0). As in the case of head-on collision, at an
initial stage of the flow development, four rarefaction regions and four compression
regions appear in a meridional cross-section of the flow field (figure 20a). With
increased time, the two vortex rings approach, and the compression regions ahead of
them merge (figure 20b). Then, the two vortex rings start to stretch at t ' 60 (figure
18c), and the new vortex pairs in the meridional cross-section move outward, away
from the x-axis (figure 19b). This outward motion of the vortex pairs produces new
compression regions ahead of them, which are marked by open arrows in figure 20(c).
The appearance of the new compression regions forces the rarefaction regions around
the vortex pairs to move circumferentially, as shown by solid arrows in figure 20(c).
This circumferential movement of the rarefaction regions produces new rarefaction
regions outside the compression regions near the x-axis, which are seen in figure
20(d). This generation mechanism of the new compression and rarefaction regions is
the same as that for the case of head-on collision discussed in § 3.2.1 (figure 6); the
first pulse is generated in the same way as that in the case of head-on collision.

With further increased time, the two vortex rings tend to move toward the negative
x-direction (figure 18c), and become coplanar at the pass-through instant, t ∼ 76
(figure 19c). In accordance with this vortex ring motion, the compression regions
ahead of the vortex pairs in the meridional cross-section move circumferentially
toward the negative x-axis, which is shown by the solid arrows in figures 20(d) and
20(e). This circumferential movement of the compression regions produces a new
compression wave which propagates toward the negative x-direction (θ = 180◦), as
seen near the x-axis in figure 20(f). At the same time, the compression region behind
the vortex pairs, which existed near the origin when the stretching started (figure 20c),
moves toward the positive x-direction (θ = 0◦), resulting in the generation of a new
compression wave which propagates toward the positive x-direction (figure 20d–f).
The vortex ring motion also induces a circumferential movement of the rarefaction
regions near the vortex pairs toward the y-axis (also shown by the solid arrows in
figures 20d, e), and produces new rarefaction waves which are seen in figure 20(f), and
more clearly in figure 21(e, f) shown later. These new compression and rarefaction
waves form the second pulse. Thus, in the case of asymmetric collision, the second
pulse is generated by the change of direction of the vortex ring motion, in contrast
to the generation of the second pulse in the case of head-on collision described in
§ 3.2.2.

With further increase of time beyond the pass-through instant, the vortex rings
start to shrink, and in the meridional cross-section the old vortex pairs tend to re-
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Figure 20 (a–f). For caption see facing page.

vive and move toward their initial x-directions, respectively (figures 18c and 19d–f).
Following the vortex ring motion, the pressure field around the vortex rings changes
with time, as seen in figure 20(g–l). From figures 20(g) and 20(h), no new pres-
sure waves are observed near the vortex rings by the time t = 88. However, as
shown later in figure 21(g), the third pulse has already been generated by this
time. The generation of the third pulse will be discussed in § 4.2.2. Accompany-
ing the revival of the old vortex pairs, new compression regions are generated
ahead of the vortex pairs, which are clearly seen, for example, in the regions
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Figure 20. Time development of the pressure field around the vortex rings. M1 = 0.20, M2 = 0.15,
rc = 0.15, Re = 3300 (Re∗ = 667). (a) t = 40 (t∗ = 8.0), (b) t = 60 (t∗ = 12.0), (c) t = 64 (t∗ = 12.8),
(d) t = 68 (t∗ = 13.6), (e) t = 72 (t∗ = 14.4), (f) t = 76 (t∗ = 15.2), (g) t = 80 (t∗ = 16.0),
(h) t = 88 (t∗ = 17.6), (i) t = 100 (t∗ = 20.0), (j) t = 108 (t∗ = 21.6), (k) t = 120 (t∗ = 24.0),
(l) t = 140 (t∗ = 28.0). ∆pmin = −5× 10−3, ∆pmax = 5× 10−3, with an increment of 2.5× 10−4 for (a).
∆pmin = −2× 10−3, ∆pmax = 2× 10−3, with an increment of 1× 10−4 for (b) to (l).

[−6 6 x 6 −4, y ' 0] and [0 6 x 6 2, y ' 0] in figure 20(k). As seen later in
figures 21 and 22, the generation of the new compression regions is related to the
fourth pulse.

With further increase of time, the two vortex rings move away from each other, and
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further changes of direction of the vortex ring motion were not observed; generation
of additional pressure waves near the vortex rings was not observed.

4.2.2. Evolution of the pressure field in the sound region

The transition process of the sound pressure from the near to far fields is shown
in figure 21 for the same flow as in figure 20. As readily seen by comparing figure
21(a–c) with figure 7(a–c), the generation mechanism of the first pulse for the case of
asymmetric collision is essentially the same as that for the case of head-on collision:



Sound generation by collision of two vortex rings 355

40

20

0

–20

–40

–40 –20 0 20 40

(g)

y

x

40

20

0

–20

–40

–40 –20 0 20 40

(h)

y

x

40

20

0

–20

–40

–40 –20 0 20 40

(i)

y

x

Figure 21. Time development of the pressure field in the sound region. M1 = 0.20, M2 = 0.15,
rc = 0.15, Re = 3300 (Re∗ = 667). (a) t = 64 (t∗ = 12.8), (b) t = 68 (t∗ = 13.6), (c) t = 72 (t∗ = 14.4),
(d) t = 76 (t∗ = 15.2), (e) t = 80 (t∗ = 16.0), (f) t = 84 (t∗ = 16.8), (g) t = 88 (t∗ = 17.6), (h) t = 96
(t∗ = 19.2), (i) t = 108 (t∗ = 21.6). ∆pmin = −3 × 10−4, ∆pmax = 3 × 10−4, with an increment of
1.5× 10−5 for (a) and (b), ∆pmin = −1.5× 10−4, ∆pmax = 1.5× 10−4, with an increment of 7.5× 10−6

for (c) to (e), ∆pmin = −1.2 × 10−4, ∆pmax = 1.2 × 10−4, with an increment of 6.0 × 10−6 for (f),
∆pmin = −1.0×10−4, ∆pmax = 1.0×10−4, with an increment of 5.0×10−6 for (g), ∆pmin = −7.5×10−5,
∆pmax = 7.5× 10−5, with an increment of 3.75× 10−6 for (h) and (i).

the change of direction of the vortex ring motion from the x- to y-directions associated
with stretching produces the first pulse. Figures 21(c) to 21(f), along with figures 20(e)
to 20(g), suggest that the second pulse is generated by the change of direction of the
vortex ring motion from y- to the negative x-directions due to the inequality of the
vortex strengths.

In the positive-x region of figure 21(f), a new rarefaction region appears between
the compression part of the second pulse and the compression region near the
vortex rings; the third pulse is just being generated. The generation and propagation
processes of the third pulse are clearly seen in figure 21(g–i). It should be noticed that
∆p of the third pulse is negative near the negative x-axis, as seen from figures 21(f)
and 21(g). If the third pulse is generated by the change of direction of the vortex ring
motion, ∆p should be positive near the negative x-axis, because the vortex pairs tend
to shrink after the generation of the second pulse (figure 19c, d) and ∆p ahead of the
vortex pairs is positive (figure 20g, h). The generation of the third pulse is similar to
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Figure 22. Time development of the pressure field in the sound region at later times. M1 = 0.20,
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the generation of the second pulse in the case of head-on collision (figure 7d); it may
not be a direct result of the change of direction of the vortex ring motion, but may
come about from matching of the near and far fields.

Figure 22 shows the pressure field at later times for the same flow as in figure 21.
We can see that the fourth pulse radiates from the vortex ring region. As already
noted in the previous section, this is because the old vortex pairs revive and the
vortex rings change their directions of motion toward their initial x-directions. Thus,
in this case of M1 = 0.2 and M2 = 0.15, the pulses are generated four times. This
is more clearly seen in figure 23 where time histories of the pressure measured at
three different points (r = 80; θ = 0◦, 90◦, 180◦) are presented. In this figure, the
numbers 1 to 4 denote the first to fourth pulses, respectively. As will be seen later
in figure 27, the number of pulses depends on the Mach number ratio M1/M2. The
four pulses have been confirmed to propagate radially at the speed of sound. We can
also see from figure 23 that the form of the pressure wave is different for θ = 0◦
and θ = 180◦, indicating the appearance of asymmetric terms such as the dipole term
A1(r, t)P1(cos θ) and the octupole term A3(r, t)P3(cos θ) in (3.1).
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Figure 25. Amplitudes of wave modes measured at r = 80. M1 = 0.2, M2 = 0.15, rc = 0.15,
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The peak pressure values of the four pulses measured along the θ = 180◦ line
are plotted in figure 24 for the case of M1 = 0.3, M2 = 0.15, rc = 0.15, Re = 3300
(Re∗ = 1000). From figure 24, we can see that the pressure peaks of the four pulses
decay with increase in r, and reach the r−1-line in the far field.

4.3. Decomposition of the sound pressure

As a typical result of decomposition of the sound pressure for the case of an
asymmetric collision, shown in figure 25 are the first five terms of the coefficients
An (i.e. A0 to A4), obtained from (3.6) using the present Navier–Stokes results for
the case of M1 = 0.2, M2 = 0.15, rc = 0.15, Re = 3300 (Re∗ = 667). For the case
of head-on collision, the dipolar term (A1) and the octupolar term (A3) vanish from
geometrical symmetry, and only the quadrupolar term (A2) and the monopolar term
(A0) are detected (figure 10). For the case of asymmetric collision, as seen from figure
25, all wave modes from A0 to A4 are detected. In all cases treated in this study,
the magnitude of the quadrupolar term (A2) was the largest. The amplitudes of the
octupole (A3) and the dipole (A1) grow rapidly with growth of the inequality of the
two vortex rings (that is, with increase in the Mach number ratio M1/M2), and in
most cases A3 was the second largest.

It should be mentioned that the dipole term (A1) does not come from change of
the total impulse. The invariance of the total impulse implies that the dipole term of
O(M3) should vanish in the low Mach number limit. However, for the present case
of small but finite Mach number, the octupolar terms of O(M5) give rise to a term
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(b) quadrupolar component measured at r = 80. – – – –, AP2 obtained by Powell’s analogy; ———,
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proportional to P1(cos θ). In this sense, the dipole term A1(r, t)P1(cos θ) in (3.1) may
be regarded as a ‘degenerate’ mode of the octupolar terms.

Shown in figures 26(a) and 26(b) are the moment I(t) and the quadrupolar term
AP2 (r, t) measured at r = 80, respectively, for the same case as in figure 25. In figure
26(b), the quadrupolar component A2(r, t) replotted from figure 25 is also presented
as the solid line, for reference. As readily seen from figure 26(b), AP2 and A2 are in
good agreement, indicating again that the generation of sound is due to the vortex
ring motion. Figure 26(a) shows that the moment I(t) has three peaks: at t ' 64, 76,
and 96. From the vortex motion in figure 19, we can see that the vortex rings are
in the stretching process at t ' 64, close to the coplanar state at t ' 76, and are
recovering their respective initial directions of motion at t ' 96.

4.4. Variation with M1 and M2

In order to see the effect of inequality of the two vortex rings, the normalized pressure,
∆p/M4

1 , is plotted in figure 27 against time t∗ − t∗1 = M1(t− t1) for various values of
M1 with a fixed value of M2 = 0.15. For the case of head-on collision, as shown in
figure 13, the present results support the validity of the scaling law ∆p ∝M4

1 . For the
case of asymmetric collision, the scaling law does not hold, as readily seen from figure
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normalized pressure, ∆p/M4
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27. For the case of head-on collision with M1 = 0.15 (dotted line in figure 27), two
pressure peaks are observed which are the first and the second pulses. With increase
in M1, and thus growth of the ratio (M1/M2), additional pressure peaks appear.

Time histories of the normalized pressure are presented against time t∗ − t∗2 =
M1(t − t2) in figure 28 for three different combinations of M1 and M2 with a fixed
value of the Mach number ratio, M1/M2 = 2. As in figure 27, the pressure is
normalized by the larger Mach number M1. The symbol t2 denotes the arrival time
of the pressure peak of the second pulse at the measurement point r = 80, θ = 180◦.
Figure 28 shows that the three curves ∆p/M4

1 versus the time M1(t−t2) nearly coincide,
suggesting the possibility that the scaling law (3.15), ∆p ∝ M4

1/r, can be extended to
the case of asymmetric collision, under the condition that the Mach number ratio
is the same. This result is consistent with the results for trajectories of the vortex
centres shown in figure 18: by comparing figure 18(c) (M1/M2 = 4/3) with figure
18(e) (M2/M1 = 4/3) or figure 18(d) (M1/M2 = 2) with figure 18(f) (M2/M1 = 2), we
can see that the trajectories are similar when the Mach number ratio is the same.

4.5. Comparison with results by the extended Möhring’s method

The sound pressure in the far field can be given by the same expression as (3.1) for a
low Mach number. We obtained the coefficients An by the extended Möhring’s method
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Figure 28. Comparison of the normalized pressure, ∆p/M4
1 , at the same Mach number ratio,

M1/M2 = 2.0. rc = 0.15, Re = 3300. Measured at r = 80, θ = 180◦. t2 denotes the arrival time of
the second pulse pressure peak at the measurement point. ———, M1 = 0.3, M2 = 0.15; – – – –,
M1 = 0.2, M2 = 0.1; –·–·–, M1 = 0.15, M2 = 0.075.

(Kambe & Minota 1983; Kambe 1984), using the present Navier–Stokes results for
the vortex region as the data for the near field. Typical examples of the results obtained
by the extended Möhring’s method (dashed lines) are presented in figure 29 together
with the DNS results (solid lines). Figure 29(a) shows a head-on collision; we have
retained terms up to order O(M4). Figure 29(b) shows an asymmetric collision; we have
retained terms up to O(M6), because in this case asymmetry should be included. As
seen from figure 29, the extended Möhring’s method gives a reasonable approximation
to the Navier–Stokes results for both head-on and asymmetric collisions.

5. Conclusions
Axisymmetric, unsteady, compressible flow fields produced by the head-on collision

and the asymmetric collision of two vortex rings have been studied by direct Navier–
Stokes simulations over the entire region from the near to far fields. Special attention
was paid to the relation between the vortex ring motion and the sound pressure waves
which it generates. By illustrating the vorticity and pressure fields, the characteristic
features and especially the generation and propagation processes of the sound pressure
waves in the near and transition fields, which were difficult to see by conventional
theoretical approaches, have been clarified in some detail.

The results show that the generation of sound is closely related to the change of
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direction of the vortex ring motion induced by mutual interaction of the two vortex
rings. Without the mutual interaction, the pressure distribution around each single
vortex ring is quadrupolar in a meridional cross-section: two rarefaction regions exist
around vortex cores which form a pair, and two compression regions exist ahead of
and behind the vortex pair which moves at its self-induced velocity. With the mutual
interaction, the two vortex pairs change their respective direction of motion and the
combination of vortex cores also changes to form new vortex pairs (§ 3.1 and § 4.1).
As a result, the pressure distribution in the near field changes such that the pressure
ahead of and behind each vortex pair becomes or remains positive. Sound generation
is related to this change of the pressure distribution in the near field.

In the case of head-on collision, the change of direction is associated with stretching
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of the vortex rings. Generation of two sound pressure waves was observed. The
generated pressure waves, which are called pulses in this study, consist of compression
parts and rarefaction parts, and have a quadrupolar nature. The compression parts
of the first pulse are generated ahead of the cores of the stretching vortex rings,
and propagate toward the y-direction. The rarefaction parts of the first pulse are
generated on both sides of the stretching vortex rings, and propagate toward the
x-direction. The circumferential variation of the pressure distribution of the second
pulse is opposite in sign to that of the first pulse. The second pulse radiates regardless
of the facts that the vortex rings continue to stretch after generation of the first
pulse and that no changes of direction of the vortex ring motion occur. This result
suggests that the relationship between vortex ring motion and generation of sound
pressure waves may not always be direct, but often comes about from matching of
the near and far fields; the harmonic constraint,

∫ ∞
−∞ ∆p dt = 0 at a given point, may

be satisfied.
The present results for the case of head-on collision show that the sound pressure

includes an isotropic monopolar component in addition to the quadrupolar compo-
nent predicted by the inviscid theory of vortex sound. This result is in agreement with
the experiment of Minota & Kambe (1986). The results also support the validity of
the scaling law for low Mach numbers, ∆p ∝ M4

1/r, which Kambe & Minota (1983)
theoretically found and the experiment of Minota & Kambe (1986) supported. On the
other hand, the computation shows two pressure peaks of the quadrupolar compo-
nent, while the experiment of Minota & Kambe showed at least four pressure peaks.
At present, we have no definite explanation for the difference; further computational
and experimental studies are required.

In the case of asymmetric collision, the two vortex rings pass through each other;
the weaker vortex ring moves outside the stronger vortex ring which shows a loop
motion. The vortex ring motion produces more acoustic pulses than in the case of
head-on collision. The number of generated pulses depends on the relative strength
of the two vortex rings (M1/M2). Some of the pulses (for example, the first, second
and fourth pulses in figure 23) are considered to be generated directly by the change
of direction of the vortex ring motion, but the other pulse (the third pulse in figure
23) is not. This result again suggests that the relationship between vortex ring motion
and generation of sound pressure waves may not always be direct; some parts of the
generation process of sound pressure waves are local and some are non-local.

For the case of asymmetric collision, the Mach number ratio plays an important
role in sound generation: both the vortex ring motion and the pressure field depend on
the ratio. The present results suggest the possibility that the scaling law, ∆p ∝M4

1/r,
may be extended to the asymmetric collision case, under the condition that the Mach
number ratio is the same. The present results also suggest that the sound pressure
includes the dipolar and the octupolar components, in addition to the monopolar and
the quadrupolar components which are observed in the case of head-on collision. The
dipolar component does not come from the change of the total impulse, but appears
as a degenerate mode of the octupolar components.

The study has shown that vortex sound theory predicts well the details of the
pulses in the far field. Both Powell’s analogy and the extended Möhring’s method give
a reasonable approximation to the DNS results for both head-on and asymmetric
collisions, so far as the flow parameters treated in this study are concerned.
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